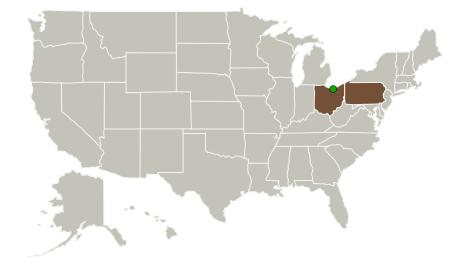
Small Business Innovation Research/Small Business Tech Transfer

Net Shape Molding of Monolithic Complex-shaped Damage-Tolerant Cryo-Insulators, Phase I



Completed Technology Project (2013 - 2013)

Project Introduction

Passive thermal control of cryogenic systems using foam insulations can help achieve Zero Boil-Off (ZBO). There is as much thermal energy transferred to Cryo tanks during the ascent phase as there is during 6 days of orbital operations using MLIs. Spray on Foam Insulation (SOFI) still suffers from drawbacks both at chemistry and interfacial (bonding) levels. Currently, strong lightweight polymeric foam insulators cannot be (net shape) molded into larger complex shapes, using commercial foaming practices. The proposed Phase 1 research studies feasibility of an inventive (unprecedented) combination of processing and "green" foaming agents to "net-shape" mold low density robust (damage/MMOD tolerant) polymeric insulation foams into "monolithic" complex shapes (such as spherical or cylindrical shells, valve fittings). These can protect polymer matrix composite (PMC) tanks (such as COPVs) against external damages, hence enabling reliable, reusable cryogenic storage designs. An added advantage of this invention is the "clean" decomposition of the blowing agent and development of an environmentally "green" insulative "net-shape" foaming technology.

Primary U.S. Work Locations and Key Partners

	Commercial Rigid Foam Cryo Insulator	Phase 1 Technology Product
Density	1.2X	X
Tensile Strength	Y	1.5Y
Thermal Conductivity	Z	0.9Z
Materials Cost. 1" foam shell, 12" spherical mold	6 Units/lb.	1 Unit/lb.
Manufacturing	Multi-stage, Bonded sheets or profile-cut	Automated net-shape monolithic molding

Net Shape Molding of Monolithic Complex-shaped Damage-Tolerant Cryo-Insulators

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Net Shape Molding of Monolithic Complex-shaped Damage-Tolerant Cryo-Insulators, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
Applied Analytic Research	Lead Organization	Industry	West Chester, Pennsylvania
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Ohio	Pennsylvania

Project Transitions

May 2013: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138348)

Images

	Commercial Rigid Foam Cryo Insulator	Phase 1 Technology Product
Density	1.2X	X
Tensile Strength	Y	1.5Y
Thermal Conductivity	Z	0.9Z
Materials Cost. 1" foam shell, 12" spherical mold	6 Units/lb.	1 Unit/lb.
Manufacturing	Multi-stage, Bonded sheets or profile-cut	Automated net-shape monolithic molding

Project Image

Net Shape Molding of Monolithic Complex-shaped Damage-Tolerant Cryo-Insulators (https://techport.nasa.gov/image/136407)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Applied Analytic Research

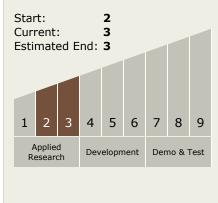
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Ray R Armat

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Net Shape Molding of Monolithic Complex-shaped Damage-Tolerant Cryo-Insulators, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- TX14 Thermal Management
 Systems
 TX14.1 Cryogenic Systems
 - ☐ TX14.1.2 Launch
 Vehicle Propellant

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

